Determination of Potential Agricultural Conservation Savings (Low End of Range) Eastside San Joaquin River

Input Data from DWR			Assumptions for Calculations	.
Applied Water	4,043	(1,000 af)	1. Ave. Leaching Fraction =	4%
Depletion	2,885	(1,000 af)		
ET of Applied Water	2,781	(1,000 af)	2. % lost to Channel Evap/ET 3 =	4%
			3. Assumed allocation of conservation	n betw District and On-farm
			district portion = 1/3 of savings * "a	adjustment factor"
			canal lining:	0
			tailwater:	0 (adjustment factor
			flexibility:	2 based on region variation
			meas/price:	0 in water districts)
Calculations from Input Da	ıta			2 (points for this region's districts
		(1,000 af)		of 4 points for average)
Total Existin	g Losses		oplied Water and ETAW)	0.5 = adjustment factor
Total Irrecoveral	le losses	104 (Diff betw. De	epletion and ETAW)	17% = district portion
Total Recoverable losses 1,158 (Diff betw. App		oplied Water and Depletion)	83% = on-farm portion	
Ratio of Irrecovers	able Loss	8% (Irrecov divide	ed by total existing losses)	
Portion lost to	leaching	9 (Leach Fractio	on * ETAW * Irrec. Loss Ratio * Adj. Fact	tor)
Portion lost to Channel Evap/ET 162 (Applied Wate		ter * % lost to Channel Evap/ET)		
i ottion lost to Chamio	Evap/L1	rom (rippired man	or 70 lest to chamie syapism)	

1,091 (Total Existing loss - Irrecoverable Loss Portion)

0 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

Incremental Distribution of Conservable Portion of Losses

Irrecoverable Portion

Recoverable Portion

		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	436	0	436
CALFED Increment =	next 30%	0.30	327	0	327
Remaining =	final 30%	0.30	327	0	327
	'		1.091	0	1.091

Summary of Savings:

Existing Applied Water Use =

4,043

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm	,	364	273	637
District	-	73	55	128
Total	1,262	436	327	764

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		364	273	637
District	:	73	55	128
Total	1,158	436	327	764

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		0	0	0
District		0	0	0
Total	104	0	0	0

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.

Determination of Potential Agricultural Conservation Savings (High End of Range) Eastside San Joaquin River

Innut	Data	from	DWR
լորալ	Data	TI OTH	DWK

Applied Water 4,043 (1,000 af) Depletion 2,885 (1,000 af) ET of Applied Water 2,781 (1,000 af)

Assumptions for Calculations

1. Ave. Leaching Fraction = 2% 2. % lost to Channel Evap/ET 3 = 2%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

canal lining: tailwater: flexibility: meas/price:

(adjustment factor based on region variation 0 in water districts)

Calculations from Input Data

(1,000 af) **Total Existing Losses**

1262 (Diff betw. Applied Water and ETAW)

of 4 points for average)

Total Irrecoverable losses

104 (Diff betw. Depletion and ETAW)

0.5 = adjustment factor

2 (points for this region's districts

17% = district portion

Total Recoverable losses

1,158 (Diff betw. Applied Water and Depletion)

83% = on-farm portion

Ratio of Irrecoverable Loss

8% (Irrecov divided by total existing losses)

Portion lost to leaching Portion lost to Channel Evap/ET

81 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential

1,177 (Total Existing loss - portion to leaching - portion to channel evap/ET)

Irrecoverable Portion

19 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

5 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Recoverable Portion

1,158 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

		Distrib. Factor_	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	471	7	463
CALFED Increment =	next 30%	0.30	353	6	347
Remaining =	final 30%	0.30	353	6	347
	•		1,177	19	1,158

Summary of Savings:

Existing Applied Water Use =

4,043

Total Potential Reduction of Application

(1,000a	ıf)	Existing	No Action	CALFED	Total
	On-Farm		392	294	686
,	District		78	59	137
Total		1,262	471	353	824

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		386	290	676
District		77	58	135
Total	1,158	463	347	811

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		6	5	11
District		1	1	2
Total	104	7	6	13

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.